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ABSTRACT

Radar is considered as a means of producing a map in two
coordinates (x and y) of a dense distribution of scatterers,
It is assumed that a complex unit-scatterer return h(t;x,y)
and a complex scatterer-density function y(x,y) can be de-
fined such that: (a) h(t3x,y) depends only on the radar;
(b) y(x,y) depends only on the scatterer distribution; (c)
the complex video representation of the echo signal is

@®
s(t) =fw\1r(x,y) h(tsx,y) dxdy; and (d) an x-y display of

V(x,y) approximates, in some practically useful way, a map

of the distribution of scattering objects in the x-y plane.
The above conditions are satisfied if x and y are taken to

be time delay and Doppler frequency. Determination of V{(x,y)
is assumed to be the objective of the radar.

A series expansion of h(t;x,y) is obtained in terms of a

set of functions, ¢,(t), which are orthonormal over the re-
ceiver operating time interval T, and a set of functions
8p{x,y), which are orthonormal over a finite region R of

the x-y plane. If the only a priori information is that
y(x,y) is zero outside the region R, then, even in the absence
of noise, only the component of y(x,y) which is representable
as a linear combination of the 8,(x,y) can be deduced from

the radar return,

A smoothed form Vyg(x,y) of y(x,y) is defined as the convolu-
tion of O(x,y) with a spike-like smoothing function. In the
presence of additive, stationary, white, Gaussian noise, a
maximum likelihood estimate of yg(x,y) can be obtained pro-
vided the 8,(x,y) are sufficiently complete to permit expand-
ing the desired smoothing function in terms of the 8,(x,y).
The appropriate receiver is not, in general, a matched filter.
The cross section of the smoothing-function spike must be
chosen to compromise between loss of detail in Yy (x,y) and
reduction of the signal-to-noise ratio.

In time delay and Doppler~frequency coordinates, let Yp(x,y)
be the component of Vy(x,y) that contributes to the radar
return during the receiver operating time interval T. If
it is known a priori that y7(x,27Tk/T) is zero for x ou®side
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an interval D and for 27mk/T outside an interval B, and if
the transmitted waveform is periodic with P = D, then, in
the absence of noise, Yyp(x,2mk/T) can be deduced exactly
from the received waveform if, and only if, BD < 27 and
all harmonics are present in the transmitted waveform,

If the smoothing along the time-delay axis is specified by

a spike-like function a(x) for all Doppler frequencies, and

if a(x) is a realizable autocorrelation function, then, for

a given transmitted average power, the output signal-to-noise
ratio is a maximum when the time autocorrelation function of
the transmitted waveform is a periodic string of pulses of

the form of a(x). The receiver weighting function appropriate
for such a waveform resembles closely the matched filter.

iv
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CHAPTER 1

INTRODUCTION

A. DELINEATION OF THE AREA OF RESEARCH

The purpose of this research is the development of a radar
: theory applicable to dense scatterer distributions. The
scatterer distribution must be representable, in the sense
described in Chap. II, Sect. A, by a scatterer-~density function
of two coordinates x and y. These could be time delay and
Doppler frequency, or any other coordinate pair satisfying the
conditions Specified in Chap. II. Whether or not other such

coordinate pairs exist is not considered in this report.

B. CRITIQUE OF EXISTING MULTIPLE-TARGET RADAR TIIEORY

A fairly complete theory of detection and coordinate estima-

: *
tion is available for the case of a single point scatterer}'z'B’u's’s

However, in most radar applications of interest, there is more
than one scatterer present at any one time; and often the problem
of resolving or separating any one scatterer echo from other
scatterer echoes with arbitrary coordinates becomes the bver-

riding consideration in radar design. Resolvability (that is,

the degree to which scatterer echoes can be separated), in two

*Superscoripts refer to numbered items in the Bibliography.
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coordinates, such as time delay and Doppler frequency, is an
important problem in multiple-scatterer theory. 'In experiment-
ing with different transmitted waveforms, it becomes apparent
that good resolvability between some targets may be achieved at
the expense of resolvability among other targets. Often, for a
given transmitted waveform, the resolvability may be improved at

the expense of detectability. In spite of these observations,

it has, so far, been impossible to obtain a set of necessary and

sufficient realizability conditions or limiting relationships
which prevént the simultaneous achievement of arbitrary resolva-
bility and detectability for a general class of target distribu-
tions. Furthermore, a systematic procedure for the synthesis of
the receiver and the transmitted waveform is lacking.

The most useful guide in choosing the transmitted waveform

7

has been WOodward's uncerta;nty function.l’2 Siebert’ has
studied the properties of this function to assist the synthesis
of the transmitted waveform by obtaining a test of the realiza-
bility of any particular form of the uncertainty function.
Several necessary conditions were established, but the 15ck of

a useful sufficient condition is still a majbr obstacle in the

synthesis of the transmitted waveform.

C. THE LIMITING FORM OF THE MULTIPLE-TARGET PROBLEM
1t appears appropriate, for certain radar applications, to
consider dense-scatterer distributions containing scatterers at

all points throughout a region of the plane of the coordinates



x and y in which the distribution is to be mapped. Under these

conditions the detection of any one scatterer and its resolvabi-
lity from all the other scatterers are not usually of direct
interest to the radar user. The user is primarily interested

in characteristic patterns formed by clusters or assemblies of
sqatterers and their over-all distribution in the x-y plane.

It is therefore assumed that the purpose of a radar system in

this application is to obtain an x-y display of the distribution

¥ of scatterers. Consequently, the appropriate measure of perform-

g e s Rt s v iy

s ance is the fidelity with which such a display reproduces the
actual scatterer distribution,

In applying existing multiple-target radar theory to this
dense-scatterer problem, the following difficulties are
encountered:

l. The theory is incomplete:; it lacks limiting
relationships, realizability conditions, and

a systematic synthesis procedure.

f 2, The measures of performance, that is detect~
ability and resolvability, are not directly

related to the interests of the radar user.
As a result, a new approach to the dense~scatterer problem

has been undertaken.

D. THE SCOPE OF THE PROPOSED THEORY

An appropriate scatterer-density model representing the
physical scatterer distribution is developed. The determination
of this model can then be regarded as the objective of the radar

systom in dense-scatterer applications. Limiting relations

| SRS (i e SO ot S PR 1= et A
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showing the extent to which the scatterer-density model may be
deduced from the radar return are obtained for the noise-free

and the noisy cases. A systematic synthesis procedure for the
appropriate receiver is developed. Also, the synthesis of trans-
mitted waveforms is carried out for the case in which x is time
delay and y is Doppler frequency.

The proposed theory is poertinent to applications involving
den;e-scatterer distributions. The single-scatterer case has
been thoroughly covered by existing radar theory. Between the
single-scatterer and the dense-scatterer distributions, there
lies a large intermediate class of distributions which may be
approximated by a finite number of discrete point scatterers,
whose coordinates are not known a priori. With respect to these
distributions, the dense-scatterer theory, just as the single-
scatterer theory, may prove useful as a limiting form of the

actual problem.
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CHAPTER II

GENERAL THEORY

A. THE RADAR MODEL
The bandwidths of all pertinent radar waveforms (the

transmitted waveform, the return from a point scatterer, and the
return from an arbitrary distribution of scatterers) are assumed
to be lgss than twice the carrier frequency so that each.wavefOrm
may be represented as a complex video signal with a one-one
relation obtaining between waveforms and their representations.
Such a representation does not contain the carrier; only the
amplitude and phase modulation are preserved. Suitable linear
combinations of the real and imaginary parts of the complex
video yield in-phase and quadrature components of actual video
signals encountered in coherent radar.

. The complex video waveform representing the return from a
point ‘scatterer is designated by

Return from a point scatterer = Vh(tix,y) (2-1)

where h(t:x,y) depends on the radar characteristics
(transmitted waveform, antenna pattern, and antenna scan), t is
‘time, x and y are the coordinates of the scatterer, and ¥ is a
complex amplitude representing the magnitude and phase of the

return,




The return from a number of point scatterers so located
that the return from each is independent of the presence of the
others is given by a linear superposition of returns of the

form of Eq. 2-1; namely,

Return from a set of - .
non-interferring point scatterers}_ z \I,: kh(t’xk'yk) (2-2)
” .

where‘I/k, X o and Yy are the complex amplitude and the coordi=

nates of k'P

scatterer. For dense-scatterer distributions
containing scatterers at all points of the x-y plane, the analog

of Eq. 2-2 is:

[0 0]
s(t) = ff V(x,y) hit;x,y) dx dy (2-3)

-
where s(t) is the radar return and V¥ (x,y) is the density per
unit area of the x-y plane, of the sources of backscatter at
a point (x,y). Discrete point scatterers may be accounted for
by two-dimensional impulses inW¥(x,y) at the appropriate points
in the x-y plane. Consequently, Eqs. 2-1 and 2-2 may be con-
sidered special cases of Eq. 2-3. Thus for noninteracting
scatterers, a display of ry(x,y)!.is a map of the distribution
of physical objects in x-y coordinates--nonzero and zero values
ofl\V(x,y)I indicate, respectively, the presence or absence of
ob jects af the correspondiﬁg regions of the x-y plane.

..Configurations of objects of practical interest often
consist of interacting scatterers which, among other things, may
give rise to destructive interference and fading of the target,
the appearance of false targets due toc multiple reflection, and

loss of targets due to shadowing by objects at closer range.
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Despite this, it may still be possible that in an appropriate
set of coordinates, Eq. 2-3 is valid for a function h(t:x,y)
determined by the radar and a functionW(x,y) that depends on
the scattering objects and that, under the proper conditions
(such as those discussed in Sect. A of Chap. III), can be made
independent of the radar. It is shown in Sect. A of Chap.
IITI that time delay and Doppler frequency are an appropriate set
of coordinates which meet the above requirements.

In consequence, we consider henceforth some coordinate pair
x,y for which we are able to define a scatterer-density funotion

having the following important properties:
1, Vix,y) is independent of the radar

2. the received waveform for a radar characterized

by any function h(t:;x,y) is given by Eq. 2-3

3. ‘V(x.y) characterizes a class of actual scatterer
configurations having members which are indis-
tinguishable by a radar characterized by any

h(t:x.y) and using any receiver processing

L, IV’(x,y)I may sometimes be interpreted, at least

approximately, as a distribution of objects

throughout the x-y plane
In view of the above properties and because, givenV (x,y), l“«x.y)l
is available for whatever interpretation as a map of che distribu-
tion of objects in the x-y plane may be possible, the desired v
radar output is assumed in this report to be an x-y display that
reproduces ¥(x,y) within some prescribed fidelity criterion.

We have, in effect, subdivided the dense-scatterer problem

into three parts:




1. the determination of a suitable pair of coor-

dinates and a corresponding functionV(x,y)

{

i

2, the interpretation oflq’(x.y)l and its rela- - §
tionship to the distribution of objects . §

3. the establishment of conditions under which
the desired radar output is achievable and
the determination of the appropriate trans-
mitted waveform, antenna pattern and scan,
and receiver processing functions for obtain-
ing the desired output.

Henceforth, aside from Sect. A in Chap. III, our only concern

will be part 3 of the dense-scatterer problem.

B. PERFORMANCE LIMITATIONS IN THE ABSENCE OF NOISE

In the following we shall determine the extent to which the
scatterer density can be deduced from the.knowledge of the noise-
free received and transmitted waveforms if the only available
a priori information is that W(x,y) vanishes outside some finite
region R of the x-y plane. In other words, we shall inquire
into the possibility of solving for W(x,y) from Eq. 2-3 when

s(t) and the transmitted waveform, and consequently h(t;x,y),

are known and the region of integration is restricted to a

finite region R.

First, two basic sets of orthonormal functions, one in t

‘and one in x and y, will be obtained. The radar return s(t),

the return from a point scatterer h(t;x,y), and the scatterer
density ¥(x,y) will then be represented in terms of the two

basic sets. With the help of these representations, the

P
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solution to the problem posed above will become obvious.
Furthermore, the two basic sets of orthonormal functions will
prove very useful in obtaining ultimate performance limitations
in the presence of noise and in developing a synthesis proécedure.

We begin by defining a function K(t,t') as follows:
K{t,t') = ff h(t;x,y) h*(¢t';x,y) dx dy - (2-4)
R

where the asterisk denotes the complex conjugate. It is assumed
that [h(t:x.y)l is bounded and that the region R is finite. We
note that

K(t,t') = K*(¢',t)

and that, as a consequence of the above assumptions,

ff|x(t.t')|2 at dt'
T T

is finite for any finite T. Thus, K(t,t') is an L, (integrable
square), Hermitian kernel.8'9 The corresponding characteristic
functions wn(t) and characteristic values An satisfy the follow-

ing equations:*

[®ie,60) @ (e1) ast = A o (t)  n=1,2,3,...5 t inside T
T (2-5)
(6) @ *(t) {1 o (2-6)
t *(t) a4t = 2~
[rq," *n 0 if mfn
A0 n=1,2,3...

*Most treatments of integral equations consider only real
symmetric kernels except that the statement is made that the
results can be readily extended to Hermitian kernels as is done
here.
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The intervgl of integration‘T is the observation interval which
‘is a fixed period of time for which the received waveform s(t)
(see Eq. 2-3) is available at the radar receiver.
Knowing the characteristic functions ¢h(é). we generate a

set of functions em(x.y) as follows:

[ metetiny) o (60) avt = w su(xy) (2)
T : '

where the by are normalizing constants such that

2 ' .
ff'em(x.y)l dx dy = 1 (2-8)
R

Since the normalization can always be accomplished with a posi-
tive real constant, we shall take the b to be positive and real.

As a result of Eq. 2-7, we have

.[ h(t:x,y) wn*(t) dat = p_ Bn'(x.y) ' (2-9)
- .

Multiplying Eq. 2-7 by Eq. 2-9, integrating with respect to x
and y, and interchanging the order of integfation on the left-

hand side, we obtain

ffcpm(t')[ffh(t:x.y)h*(v:x.y)dx,dy]cpn*(t)dtdt' =
TT R |

Ll'mll-n ff e‘m(le) en*(xo)’)dxdy
'R (2-10)
Substituting Eq. 2-4 for the bracketed term on the left -hand

'side and making use of Egqs. 2-5, 2-6, and 2-8, we find that

ffe( ) 8 *{ )d'd' {1 i m = (2-11)
: X, X, X - = ' -
e m'**¥? Tn d d ) if m¥n
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and that
b 2= (2-12)
Equation 2-12 indicates that K(t,t') is a non-negative kernel

(recall that the M,'Ss are positive and real), which fact can

also be ascertained by noting that

/]

R

2
fh(t:x.y) u(t) dt| dx dy = 0

T

which with the help of Eq. 2-4 becomes
ffu(t) K(t,t') u*(¢t') dt at' =2 0 (2~12a)
TT

for any uf(t).
It is useful to note that the functions ¢n(t) can be géne-
rated from the functions en(x.y) by first multiplying both sides

of Eq. 2-7 by h(tix,y), integrating with respect to x and y, and

‘interchanging the order of integration, so that

unffh(t:x.y)en(x.y)dxdy = f[fh(t:x.y)h*(t':x.y)dxdy]cpn(t' )at
R T LR

Next, by substituting K(t,t') as given by Eq. 2-4 for the brack~

eted term on the right-hand side and by using Eqs. 2-5 and 2-12,

we obtain
ffh(t:i:.y) 0, (x.y) dx dy = u_ ?,(t) ~ (2-13)
R

In order to obtain a representation for h(t;x,y) in terms

of the cpn(t) and em(x.y)‘. consider the following expression
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‘n ° ffflh(’“x-y) - i Hy P (£) Ok‘(x.y)'z dxdydt (2-14)
TR k=1

With the help of Eqs. 2-4, 2-13, and 2-12, we find that

n . .
<, = fl((t.t)dt -Zxk (2-15)
_ T . k=1

It will be assumed that the radar return from a point scatterer,
that is, h(t;x,y), is a continuous function of time uniformly in
x and y over R--an assumption which, from a physical standpoint,
does not restricq the generality of the analysis. Consequently,
K(t,t') as defined by Eq. 2-4 must also be continuous. Furthér-
. more, since K(t,t') is non-negative (see Eq. 2-12a), we can use
a corollary of Mercer's theorem (see reference 9, p. 127), which
states . |

e 2]

Z A = _[K(t,t‘) dt (2-16)
T

- k=1
Therefore, as n approaches infinity, Eq. 2-15 becomes

bim €n =0
n— o©

which when applied to Eq. 2-14 yields

. o _
Lim - lh(t:x.y) - Z e 9 (t) ek*('x.y) dxdy dt = 0
n—* o0 '{“f{ k=1

Thus, we obtain the representation

n

h(t;x,y) = £.i.m. Z My cpk(t) ek"(x.y). (2-17)

—
n © =1

which is valid regardless of the completeness or 1npomp10tonoss

1" of the sets ¢k(t) and Ok(xyy).
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Next, we seek the appropriate series representations for
the radar return s(t). Multiplying both sides of Eq. 2-3 by

¢k*(t) integrating over T, interchanging the order of integra-

.tion on the right-hand side, and using Eq. 2-9, we find that

W T oWy ffq‘/(x.y) ek*(i.y) dx dy (2-18)
R
where
s ~ j.s(t) ¢k*(t) dt (2-19)
T

Multiplying both sides of Eq. 2-18 by ¢k(t) and summing from
k=1 to k=n, we obtain

n

n .
} :’k P lt) 'z b P lt) ffv»(x..y) 8, *(x,y)dxdy (2-20)
R |

k=1 k=1
Subtracting Eq. 2-20 from Eq. 2-3 and re-arranging terms gives

n

s(t) -Z 59 (t) = [[[nteixiy) -i i (6)0,* (x,3)] P(x,y)axdy
R o

k=1 k=1

By applying the Schwarz inequality, we obtain

|ste) i skcpk(t)lz < -
k=1

| f/'h.(t‘x-y) 'i ﬂk¢k(t)9k‘(x.;')lz dxdy ff“l(x.y)l'z dxdy
R k=1 R

(2-21).
With the help of Eqs. 2-4, 2-12, and 2-13, the first factor onm

the right-hand side may be rewritten so that

|ste) -zn: skcpk(t)lzﬁ[x(t.t') "i Ao (80 (0)] [[9ixay) | azay

k=1 k=1 R (2-21a)

s e o s s e <
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Since K(t,t') is continuous and non-negative (sée discussion
below Eq. 2-15), we may, in proceeding to the limit as n
approaches infinity, apply Mercer'§ theorem to the bracketed
expression in Eq. 2-2la. Thus, assuminé that Y(x,y) is an

integrable-square function* over the region R, we obtain

n 2
im . l,(t) -E s (t)l -0
N —is 00 =1 k%

so that

s(t) =

[\/]8

S P lt) .(2=-21b)
k=1

converges almost uniformly.9 Note that Eq. 2-21b is valid

regardless of the completeness or incompleteness of the @k(t).
We are now in a position to inquire into the possibility

of solving for Y(x,y) from Eq. 2-3. For this purpose we define

the coefficients {,_as follows:

“’k = f/ yix,y) ek*(x'.y) dx dy (2-22)
R

where we have used Eq. 2-18. From the theory of orthonormal
expansionsg. it is known that Y(x,y) may be decomposed into two

orthogonal components as follows:

Vix,y) = Vulxy) + ) (x,y) (2-23)

.such that

*Such a restriction excludes point targets which produce impulseé
in W(x.y). It does not exclude approximations to point targets
that produce large-magnitude narrow-base spikes in Y(x,y).

!
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: . ff Wu‘(xnyl) W_L"‘(x.y) dx dy = 0 (2-23a)
¥ R ' :
n s .
\""(x.}') = :._j.;mm;wk ek(x.y) | (z-ng).
-2 m‘ 2 .
ffl#'u(x-v)l dx dy = Z l%‘l , (2-23¢) .
R k=] ' .
ff"’("'y) 8*(x,y) dxdy = f/W"(x.y) 8, *(x,y) dxdy =y,
R | R ~ (2-234)
ff‘PJ_(xtY) ek*(x'Y) dxdy = 0 for each k . (2_230)
R
and |
Hwll = Wyl +Nwpll (2-23¢)

where the double vertical bars are usaFl to denote the norm or
integrated ‘square of the function shown between the bars. If
‘the system of functions ek.(x.y) is complete over the region R,
then 4I_L(x.y) =0,

By substituting Eq. 2-23 into Eq. 2-18 and making use of
Eq. 2-23e, we find that W;L(X-.Y) makes no contribution to .any of

the Sy - Thus, from Eq. 2-21b, it follows that

1 ffh(t:x.y) WJ_(‘x.y)'dx dy = 0 (2-24)
. R .

Consequently, the component \P-L(x.y). which will be referred to
i as the ambiguous component of the scatterer glensity.’ does not
contribute anything to the radar return; and the most that we

can hope to determine from s‘(t) is the unambiguous component




PR

16

Yﬂl(x.y). The latter can indeed be determined by a radar
receiver which operates on s(t) with a weighting function

W (x,yit) defined by

n .
Ualxyit) = ) L geie) g lxy) (2-25)
L |

so that the result of the operation is

n
Jualeyit) ste) ae = ) ¥ 6 lxy) (2-26)
T k=1

where we have used Eq. 2-3, 2-9, and 2~22. In the 1limit as n
approaches infinity, we obtain the representation for V(x,y)
given by Eq. 2-23b.

Recall that K(t,t') is a an-negative Lzukernel so that its
charactefistic Qalues An’ and hence the o (see Eq. 2-12), may

8.9

be arranged in a sequence of nonincreasiﬁg values '’ with
increasing n. Consequently, if there is an infinite number of
un's, the weighting function given by Eq. 2-25 does not tend to
a limit as n— ®. However, the result of operating with this
weighting function (that is, Eq. 2-26) does have a limit in the
mean by Eq. 2-23b.

In the foregoing we have obtained a representation of
h(tix,y) in terms of its characteristic functions wn(t) and
Bn(x.y)‘and its characteristic values B The scatterer density
has been decomposed into two orthogonal components \V“(x.y) and
&g!x,yz such that the first is representable as a linear combifaq
tion of the characteristic functions of h(t;x,y); whereas, the

second is not. Thus, the radar return, which was shown to con-

tain contributions only from the characteristic functions of
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h(tix,y) carries no information abdut'W&}xgy). As a result,
only ‘Y”(x,y) can be deduced from the radar return. For this
reason \V“(x.y) and Yﬁ}x,y) are referred to, respectively, as’
the unambiguous and the ambiguous components of the scatterer
density. If h(t:x,y) and the region R are such that the ‘
characteristic functions Bn(x,y)'are compiete. then, in the
absence of noise, a series rebresentati;n for the total
scatterer density¥ (x,y) can he deduced from the radar return.

The completeness conditioP may be restated in a number of
equivalent forms.8’9 However, there is no dirqct mathematical
test for explicitly establishing the completeness or incomplete-
ness of the Gn(x.y) for any h(t;:x,y). Thus..the problem of
deducing Y(x,y) from s(t) has been.Feduced to a well-known
mathematical problem.

The indexing of the charactefistic functions pk(x,y) is
arranged in order of nonincreasing By or Ak which, in general,
can be assumed to correspond to increa;ing "wiggliness" of;the
Gg(x,y) as a function of x and/or y. Thus, high-order (high—k)
characteristic functiong represen# the sharp features of \ﬂl(x.y);
whereas, low-order (low-k) characteristic functions réprésent
‘the d-c - like, or smooth, features of ﬂﬁﬁx.y).

The incompleteness of a set of characteristic functions
Bk(x.y) may be regarded as'a deficiency of orthogonal functions
reﬁuirpd for the representation’ of Vﬁ}x,y). The set of missing
'functions'cgn also be classified into high- and low-order
functions. Defiociencies of the'first claSs resulf in an error
in the sharpness of detail on the radar display (which can only
show ‘V“(x.y)), and deficiences of the second class rgsult in

an error in the smooth features on the display.
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It is clear from Eq. 2-23 that ignorance of 4&}x.y) will
also make it impossible to obtain a display of IW(x.y)I. .Quali'
tatively, the deficiencies in a display of |y} (x,y)| are the

same as the deficiencies in W"(x.y) discussed above.

c. .SMOOTHiNG AND ESTIMATION OF THE SCATTERER DENSITY IN THE
PRESENCE OF NOISE

In the presence of noise, which is assumed to be Gaussian,
st;tionary. white, and additive, it becomes impossible to make
an exact determination of W“(x.y) or IW”(x.y)lg . much less,
of Y(x,y) or IW(x,y)l. It will be shown that, under these
conditions, only an estimate of a smoothed form of ¢"(x,y) can
be obtained. Such beﬁavior is, to a certain extent, analogous
to that encountered in the problem of extracting an unknown
signal s(t) from a background of white, Gahséian, additive noise.
In order to obtain an undistorted replica of s{t), an infinite
bandwidth is required which, in turn, results in infinite noise
power. ‘Therefore, a certain degree of smoothing and the result-
ing signal distortion is accepted in order to reduce the noise
power. The optimum smoothing opefation (that is, one that mini-
mizes some measure of the total error caused by signal distortion
and noise) depends on tée characteristics of‘s(t) and can be
determined only from a priori knowledge about s(t). Since such
.information is not available for Y¥(x,y), we shall consider the

effect of a class of smoothing operations upon both signal, in

our oase Y(x,y), and noise.
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One o:;ample of a linear smoothing operation is given by:
Vix,y) = ffs(x-x' w-y')V¥i(x',y') dx' ay’ (2-27)
] i ‘

where \lfs(x,y) is‘ the result of smoothing and S(x,y) has the form
of the right cylinder illustrated in Fig. la. The cross-section
area of the cylinder is 0, the height is l/d, and the volume is
one. For such an S(x,y), ‘Vs(x.y) in Eq. 2-27 is the average of
V¥(x,y) over the area o .

More generally lS(x,y)I'may have any spike-like form, such
as the function illustrated in Fig. 1lb. The result of smoothing,
in this more general case, can be thought of as a weighted

average of V(x,y), if the volume under S(x,y) is set equal to one.

ff S{x,y) dx dy =1 ' (2-28)
=

It is convenient to define the effective averaging area of a
general spike-like S(x,y) as the cross section O of a cylinder
that is equivalent to the spike in the sense that the volumes

under the squared magnitude of the two functions are equal. Thus,

T - — %2 (2-29)
ffls(x.y)l dx dy
-®

Of particular importance in the present context is the class of
smoothing functions for which (a) S(x,y) falls off rapidly for

x and y outside -an area ¢ about x=0, y=0; and (b) 0 is much '
'smaller than the area of'the'region R. For such a smoothing

function, the radar display.contains signifiocant detail,,




(b)

Fig. 1 Examplo's of Smoothing Functions
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If we regard S(x-x',y-y') as a function of x' and y' with .

X and y as parameters, we can write

S(x-x'.yii') !~}E:}n(x.y) o *(x',y') + sJ}x.yéx'.y') (2-30)
n

where

pn(x.y) = ffs(x-x'.y-,y') Gn(x'.y') dx'dy! (2-30a)
R

and Sl}x.y;x',y') is the component of S(x-x',y-y') orthogonal to

all the functions en(x'.y'),
.[fﬁLx.y:x'.y') en(x'.y') dx'dy"f'g (2-30b)
R

Substitution of Eq. 2-30 into Eq. 2-27 and use of Eqs. 2-22, 2-23,

2-23b, and 2-30b yield

\Vs(x.y_) = Z\ykpk(x'y) + ffS_L(x.y;x' .y')V_L(x' ,y') dx'dy!
k R (2-31)

Since only the\Kk's can be deduced from the received waveform
(even under noise-free conQitions), the last term in Eq. 2-31
consti'tutes an ambiguous component of ‘Vs(x.y). One means of
obtaining unambiguous determination of\Vs(x.y)4 in the noise-free
case, . therefore, is to select a smoothing function and trans-
mitted waveform in suc_h relationship to one another that

QL(x.y;x',y') is zero. In these circumstances,

VS(X.)’) = Z\Vk pk(x'Y) (2"313)
" .

The radar return from which ¥_(x,y) is to be estimated is

given by: r(t) = s(t) + n(t) (2-32)

4 e et e A} o e PUSv—
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where s(t) is the signal component, given by Eq. 2-3, and n(t)
is the noise component in the complex video representation, |
Multiplying both sides of Eq. 2-32 by ¢ *(t) and ':Lntograt\:ing
with respect to t over the interval T gives

= s, *n k=1, 2,3, «0s - (2-33)

where
r, = fr(;t) @ *(t) dt (2-33a)
T .

sk-is given by Eq. 2-19, and

n,_ = ./;(t) ¢k*(t) dt (2~331b)

T
With the help of Eq. 2-22, Eq. 2-33 may be rewritten as follows:

re = b Yt (2-34)

Equatioﬁ 2-33b is to be interpreted as a ;tochastic integrallo:’
and nk}fé random variable. |

Since the s 's completely specify the signal component s(t)
(see Eq. 2-19), the rk's may be used as the "observables" or
"observable coordinates.“B'u Thus, the problem of estimating
V;(x.y) from r(t) may be restated as a problem of estimating
Vg(x.;) from the r 's. . '

It was assumed that the noise n(t) is stationary, white,

~Gaussian noise of zero mean; let its spectral density be Ny

With the help of Eq. 2-33b, we can evaluate the following

averages:

a1 ST TSRO
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n n* = ffn(.t) n’.'?t") Q’k(t)"v“'(t') dt dt¢!
TT
- ff.no'a(t-t') (pk(t) cp"“(‘t') dt 4t
TT
e mer = Ny [ o (6) 9,%(6) at (2-35)
T

where the horizontal bar denotes an ensemble average. Thus,

using Eq. 2-~6, we obtain

_ N0 if k = &
n n,* = . (2-36)
- : 0 if k # ¢
Since linear Qpérations on Gaussian random processes result
in Gaussian random processes or variables,u’lo all the nk's are

jointly Gaussian randbj va;iables with zero mean. Thus, for a

given set of W;'s. the r_'s as given by Eq. 2-34 are jointly

k
Gaussian random variables whose joint probability density will
be denoted b}' -

Probability density = P(rl,rz.rB..../wl.wz.\pB....) (2-37)

From Eqs. 2-34 and 2-37 and from the fact that the average value
of N is zero, we conclude that the maximum-likelihood estimate

Ve °f ¥ is given by |
- :
= K : . -
Vio = o (2-38)
If S(x-x',y-y') is nonsingular, that ise if given Y (x,y) ,
Eq; 2-30 is satisfied by a unique function Vix,y): and

furthermore . if §L(x.y:x'.y') is zero, then a one-to-one

correspondence holds between sets of Wk and functions
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\}"s(x,y). as given by Eq. 2-31a, Under these circumstances the

maximum-likelihood estimate of V_(x,y) is formally given by

00
Vo lmr) = ) Y mlxy) . (2-39)
k=1

where \Ifse(x,y) is the estimate of Vs(x.y). Using Eqs. 2~-38, 2-34,
and 2-3la in Eq. 2-39 and redefining terms, w‘e.obtain

Yselxy) =¥ (x,y) + n(x,y) (2-40)

where n(x,y) is given by

(o] nk
n(x,y) = E = 'pk(x.y) (2-40a)
: — k
. k=1

Thus, according to Eq. 2-40, the final output on the radar dis-
Play consists of two components, one of which is the smoothed
scatterer density and the other is the noise. From Eqs. 2-40,

2-40a, 2-30a, and 2-27, it follows that

\Yse(x.y) = ffS(X-x'.y‘-y')Y(x'.y') dx'dy*
R

D n
M E 'ui l:f[s(X-x' yey') 8 (xt,y! ).,.dX'dY]
Kk .
R

k=1 (2-41)
If S(x-x',y-y") is singular--that is, if knowledge of \{’s(x.y)
does not determine Y(x,y) uniquely, but still Si{x,yix',y') is
zero--the seot of‘\lfk's cannot be deduced from Ys(x,y). Observe,
hbwever, that: (1_) an estimate Yse(x,y) is determined by Eq. 2-41,
whether or not S(x-x',y-y') is singular; and (2) as the input

noise decreases to zero, the n.'s tend to zero and \Yse(x.y)

approaches‘{’s(x.y), whether S(x-x',y-y') is singular or not. We

R bt < i b s i s 4 i~

e s —— s
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therefore consider Eq. 2-41 to yield a reasonable estimate of
ig(x.y)vin the singular ocase.

If Slfx.y;x'.y') is not zero, the set of ek(x'.y') is not
complete; and for some Y(x',y'), qu}x',y') not only is not zero
but also is not orthogonal to §L(x,y;x'.y') for some (x,y). By
Eq. 2-31, therefore, an ambiguous component of.ﬁg(x.y) exists
even in the noise-free case. We, therefore, conclude that a
meaningful estimate (given by Eq. 2-41) can be obtained if,and
only if, the set of ek(x.y)'s is sufficiently complete so that
S(x-x',y-y'), regardless of whether it is singular or not, is
representable in the form of Eq. 2-30b.

The mean-square value of the noise at any point on the

display is given by

2 2~ o (x.y)]* |
[n(x,y)|* = E — (2-42)
k=1 My '

where we have made use of Eqs. 2-30a and 2-36 in Eq. 2-40a. If
we average the mean-square noise over the area of the display,

that is, the region R, we obtain the average mean-square noise

2

(28]
o=k ff Inte)|? axay = w, ) = (2-43)
R k=1 Mk ,

where pkz is the average value of |pk(x.y)|2; namely,
2 _ 1 2
P, R -K[ka(x.y)l dxdy (2-43a)
R .
~ In applications in which IW(x.y)l is a meaningful representa-

tion of the scatterer distribution (see Sect. A of this chapter),

the radar user may be primarily interested in the magnitude of
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Yg(x.y). Unfortunately the relation between rYs(x,y)l and the
set of\’k's is not one-to-one so that a maximum-likelihood esti-
mate of rys(x,y)l cannot be made. We shall, therefore, use as

our estimate of the magnitude of Yg(x.y) the magnitude of the

estimate of‘l’s(x.y)a namely l“'{/”(x.y)l.

D. NOISE AND SMOOTHING

In this section a performance index which is an average-

signal-to-average-noise ratio is defined, and expressions for
this ratio are obtained in terms of useful system parameters.

The energy received from a unit point scatterer is given by

E(x,y) = j]h(t:x,y)|2 dt (2-44)
T

which, in general, is a function of x and y. The average energy

over the region R is given by

E, = & {f T[Ih(t:x,y)lz dt dx dy ' (?-us)

where R is used to designate both the region occupied by
scatterers and its area.

It follows from Eqs.2-17 and 2-45 that

Q0
ER = E o " (2-46)
k=1

Furthermore, if S_L(x.y:x' ') = 0, it. follows from Eq. 2-30 .that

ffl‘s(x-x‘ .y-y')|2 dx'd‘y' = O.Z ka(x,y) |2
B .

k=1
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for x and y inside R. Since the cross section of S(x,y) is much

smaller than the area R, we can rewrite the above expression as

B - - 2 © ____
ffls(x‘.y)l dx dy = Z pk2
- 00

k=1

follows:

vhere p,° is given by Eq. 2-43a. Making use of Eq. 2-29, we

obtain
[os)

2-—1- .-u
Py o (2-47).
k=1

It is convenient to define the following sets of normalized

quantities

“"s (2-48)

and

N

By :

e = (2-49)
2

Hn

n=1

3

Applying Eqs. 2-46 through 2-49 to Eq. 2-43 and redefining terms

ives :
N
‘ 0 ‘ :
Np = 5 5 (2-50)
0
where . ® @
J = E ™ (2-51)
= k :
k=1

Because O is much smaller than R, Q;(x,y) is negligible outside
R eoxcept in a region that (for regions R of reasonable shape) is

negligible relative to R. Thus, the average signal intensity '
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2
% ffh’n(""')l dx dy is very closely approximated by
R

» 2 .
s = % ffl‘{’s(x.y)l dx dy (2-52)
- 0 :

and the average-signal-to-average-noise ratio is

S
‘q= — ’ (2"53)
Y2 .

Substituting Eq. 2-27 into Eq. 2-52 and interchanging orders

of integration gives

®
s = % jy‘ j.W%(x'.y')Ks’(x'-x".y'-y“rvh?(x".y")dx'dy'dx"dy"
AN )

(2-54)
where
© :
K g(x"-x",y'-y") = ./]ns(x-x'.y-y') S*(x-x",y-y") dxdy (2-54a)
- -

and where

o VYi(x,y) " for (x,y) 4inside R

Yrix.y) =+ . . (2-54p)
, 0 otherwise

Changing variables and integrating over x' and y' in Eq. 2-54

gives

(o o] . .
s=% ffxw(u.v) K g(u,v) du dv  (2-55)
- Q0

where

o0
K‘pw(u.‘v) = ff\VR(x' ') YR*(x'-u.yJ—v) dx'dy’ (2-55a)

-®
which is the autocorrelation function of the scatterer density.
Two classes of scatterer densities for which explicit results

can he obtained are:
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1. the class of smooth scatterer densities--
all scatterer densities whose autocorrelation
function, Kw“u.v). does not change apprecia-
bly over a region of size & ocentered at u=o0

and v=0;

2,' the class of rough scatterer densities~--

all scatterer densities whose autocorrelation
‘function, K‘p\y(u,v), in the vicinity of u = 0

and v = 0 is substantially confined to a region

much smaller than ¢ . (The behavior of K‘N,(u,v)

for u and v outside an area ¢ about the origin

has negligible effect on S--see Eq. 2-55.)

If  we note that Kss(u.v) is a spike-like form whose cross
section is approximately o (see Eq. 2-54a) and if we use the sub-

scripfs s and r to refer to the smooth and rough class, respec-

tively, then Eq. 2-55 becomes

o]
s, = & Kypp(0,0) ff K, (u,v) du dv " (2-56)

. ‘ o

for smooth scatterer densities,.and

) Q0
s. = % xss(o,o) ff xw,(u.v) dg dv (2-57)
- @O

for rough écatterer'densities. With the help of Eqs. 2-28, 2-29,
2-54a, 2-55a, and 2-54b, Eqs. 2-56 and 2-57 may be rewritten as

follows:

s, = % ffl\l/(x.y)lz dx dy (2-58)
and : |

s, = %— I% {f\[/(x,y) dx dyl2 _ - (2-59)
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Substituting Eqs. 2-50, 2-58, and 2-59 into Eq. 2-53 and
redefining terms, we obtain for the smooth and rough scatterer

densities, respectively,

, ,_3_13;;, |2 | (2-60)
and
52 % 1o e

where FYIZ is the average value of the squared scatterer density
—12 .
and IV/’ is the square of the average value of the scatterer

density; that is,

W o ffIY“'Y’Iz dx dy (2-62)
and R '

I‘?lz = I% ff‘}’(x.y)‘ dx dylz (2-63)
R .

In order to provide an interpretation for J in Eqs. 2-60
and 2-61..suppose.'for a moment, that all the uk's are equal for
1 £k £Mand are zero otherwise. The sums in Eqs. 2-30, 2-48,
2-49, and 2-51 then are over, at most, M terms, and>J is equal
to M--the number of normal modes contained in h(t:x,y). Next,
suppose that the values of the uk's are approximately constant
for 1 £ k £ M and decrease very rapidly for k > M., If o has ..
any significant value for k > M, then J will be large and ns and
7y will be small (see Eqs. 2-60 and 2-61). As a result, the o 's
must be confined substantially to 1 < k € M. and then, J is again
approximately equal to M. Thus, in general, J may be interpreted

as the effective number of modes that may be utilized without




OIS DU YU SN A W

finite signal onorgy‘no. the series

31

undue decrease in the average-signal-to-average-noise ratio.
Despite the infinite number of normal modes in h{(t:x,y), the
number of modes that afe usable to obtaiﬁ‘yse(x,y) is finite
because the high-order modes contain little oﬁorgy‘and are sub-
merged in noise.

If the smoothed scatterer density i§ to be an exact replica
of the actual scatterer density, then (a) S(x-x',y-y') must be a
two-dimensional impulse 8(x-x',y-y'); and (b) the scatterer
density W(x,y) must contain no ambiguous component V&jx.y). In
order for condition (b) to obtain for all L, functions Y(x,y),
the set of Sk(x,y) must be complete. In this event the impulse
may be regarded as the limit approached by the sequence of
functions |

n

> slxy) gt ety

k=1
because for a complete set of ek(x.y)
n
L.4.m. ff‘&’(x' .y')[z 8, (x.,y) 8, *(x',y! )]c.lx'dy', = ¥(x,y)
nTro g k=1 .

The corresponding sequence of J's may be evéluated from Eq. 2-51,

giving n
Jn-;l'-g ;,1: : n=1,2,3, «0.
k=1 -
1
Since the Pkfs are positive, Jn > "56 or Pn‘> "y For a

(v2]

"
k=1
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converges by Eq. 2-46. Hence, according to Eq. 2-49,.

and the series

o)
)
n Jn

n=1

must also converge. Since

P
S~

n=1

diverges, we conclude that Jn must approach infinity with
increasing n. Hence, exact reproduction of an arbitrary
scatterer density Y(x,y) requires an infinite number of usable
modes.
’ In general, as the form of S(x,y) is adjusted to shrink o
toward zero in an effort to obtain fine resolution, if at the
same time ambiguities in the determination of‘Ys(x.y) are
avoided, then J approaches infinity for any spike-like shape
S(x,y). By Eqs. 2-60 and 2-61, the average-signal-to-average-
noise ratios Mg and Ny each tend to zero in the process. We
conclude that the sharper the details of V(x,y) that we attempt
to qstimate. the lower the average-signal-to-average-noise ratios
secome. As.a result, the resolvable cell size O must be chosen
to compromise between two.requirements:

1. o must be sufficiently small to assure that the

essential details of Y(x,y) are not smeared out
in the smoothing process

2, o must be sufficiently large to achieve a desired
signal-to-noise ratio
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E. THE RECEIVER

The input to the radar receiver is r(t), and the output
at the end of the observation interv$1 T is a two~dimensional
display of w;.(x.y) (or que(x.y)h. From Eqs. 2-33a, 2-34,

2-30b, 2-40a, and 2-40, it follows that, if

n
‘ P (xly)
WV (x,y:;t) = ¢.i.m. K o *(t) (2-64) .
s Xoy n—.lnm; u'k k )

‘for each x and y, then

j}s(x.y;t) r(t) at =y __(x,y) (2-65)
T

Thus, the receiver is described by the linear operation,

. fws.(x.y;t) r(t) a4t °
T

if W;e(x,y) is the desired ogtput. As long as J is not infinite”
and O is not gzero, NR (see Eq. 2-50) is finite so that, as a
result of Eq. 2-43, In(x,y)l2 is finite almost everywhere in R,
Thus, comparing Eq. 2-64 with Eq. 2-52. we see that the right-
hand side of Eq. 2-64 converges in the meaﬁ'as a function of
t, x, and y. |

For any‘Bn(x.y) that is nearly constant over the averaging
region of the smoothing function S{x,y), Eq. 2-30a yields
p,ix.y) = en(x;y). Thus.,, if the en(x,y)'s are arranged in order
of decreasing smoothness, the leading terms in Eq. 2-64 will
resemble the corrésponding terms for the noiseless-case receiver
given by Eq. 2-25. For a given lle (or T;Tz) and a .lower bound

on 7 (or m,), Eqs. 2-60 and 2-61 indicate that the lower the
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input noise level No or the greater the signal energy EO' the
closer to an impulse can S(x,y) be made. Thus, as the input
noise level decreases, more and more of the terms in Eq. 2-64
Vwill resemble terms of Eq. 2-25 for the noiseless-case receiver.

In order to relate the above results to the conventional
theory.of pPoint-scatterer detection by ;adar. Qe consider a point
target at (x;,y,). The smoothed scatterer density is, by Eq. 2-27,

Ys(xwy) = slx-x4.y-y,)
and the‘signal intensity on the radar display at the position of .

the target is

>
Yg(xo.yo)l = IZE::pk(xo.yo) 8, *(x5.¥4)
k

where we have made use of Eq. 2-30. With the help of Eq. 2-42,

we obtain the signal-to-noise ratio at the position of the target

PIARE v [2emerel |

IY(x .yo)l 1 %
In(xo,yo)l Yo }: ka(x 'yo)lz
k “kz

Applying the Schwartsz inequality to the numérator gives

2
IY(X°'Y°)| '_Z”k |° (‘0”'0)'

|n(x .y°)|2

where we have also made use of Eqs. 2-L4 and 2-17. The maximum
sighai-to-noiso ratio is achieved when
—__u'k-—— = C(xopYO) H-k ek(XO'yo) (2“66)

where c(x,,y,) is an arbitrary function of x, and y, and 1is

VOOV i




35

independent of k. Thus, acocording to Eqs. 2-64 and 2-66, the

receiver whioch uaximiios

. |V;(xo.y°)!2

12
In(xo .)’o) |
for all x, and Yo inside the region R is given by

n

Volx,yit) = c(x.y)‘b;;.m. ZE::uk 8, (x,y) ¢k*(t) - (2-67)

n—"oo =7

where W,(x,y:t) is used to designate the Ws(x,y;t) obtained when
pk(xyy) is given by Eq. 2-66. The resulting smoothing function,
which may not have a spike-like form S(x-x',y-y') is given by

.
S(x,y:x',y') = cl(x,y) E ukz Ok(x.y) ek*(x'.y') (2-68)
| k=1 -

Comparing Eqs. 2-67 and 2-68 with Eq. 2-17, we obtain.
Wolx,yit) = clx.y) h*(t;x,y)
and

S{x,y:x!',y') = c(x,y) fh(t:x.yl h*(t;x',y') at
T

Thus, aside from the multiplying function c(x,y), the receiver
reduces to the matched filter; the smoothing function reduces to
a generalized form of Woodward's uncertainty function; and the
output signal-to-noise power ratio reduces to the energy ratio

f(x,y)/No of conventional detection theory.




CHAPTER III

DELAY-DOPPLER RADAR THEORY

A. THE SCATTERER-DENSITY MODEL

It is assumed in this chapter that x is time delay and y
is Doppier angular frequency. It is further assumed that, if
f(t) is the complex-video representation of the transmitted wave-
form, the radar return from a point scattefer‘at delay x and

Doppler angular frequency y may be expressed as

h(tix,y) = f(t-x) o 3% (3-1)
As a result of the superposition of electromagnetic fields
in linear media, the radar return due to any transmitted wave
f(t) can always be represented by |

®
s(t) = .[g(x.t) f(t-x) dx (3-2)

‘ - 00
where s(t) is the received waveform and g(x,t) is independent
of f(t) and depends only on the antenna, the scgfterer distribu-
tion, and their relative positions and motion.
On physical grounds it may be assumed that g(x,t) is an
integrable-square function of time over any finite t;me‘interval
L-so that the integral

Vi) =& fext) o3 a0 (3-3)
L

36




37

exists. Hence, by Fourier transform theory, we have

o .
glx,t) = fwx.y) o ItV ay (3-4)
) - 00

for t inside the interval L. Substituting Eq. 3-4 into Eq. 3-2

gives . ,
s(t) = fj Vix.y) flt-x) o3 axay = (3-5)

-
for t inside L. The interval L is assumed to be sufficiently
long so that any observation interval T of interest to the ;adar
| user falls inside L and Eq. 3-5 is, therefore, valid for t inside
T. Equation 3-5 is the same as Eq. 2-3 if h{t;x,y) is defined by
Eq. 3-1. Clearly h(t;x,y) depends only on the radar; and by Eq.
3-3, Y(x,y), like g(x,t), depends only on the scatterers and the
radar antenna. To eliminate dependence of Y(x,y) on the radar,
we assume a priori that the scatterers are confined to a region
~of uniform, unchanging antenna illumination. Thus, the condi-
tions required of the coordinates x and y in Chap. II, Sect. A,
are satisfied and determination of W(x.y) can be considered the
radar objective in a study of performance obtainable with differ-
ent transmitted waveforms and receiver processing functions.

Note that, in view of the choice of h(t;x,y) (see Eq. 3-1) -, it
is to be expecéod that.subject'to the usual restrictions (such
as wide antenna beamwidth, narrow transmitter bandwidth, negli-
gible target acceleration), lW(x.y)l may be regarded as an
approximate map of the distribution of objects throughout the

x-y plane.
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B. PROPERTIES OF TRANSMITTED WAVEFORMS
It is assumed in the remainder of this chapter that ¥(x,y)

is known a priori to be zero for x outside an interval D, extend-

ing from x=x, to X=X, It will be shown that, in consequence,

1

certain classes of waveforms need not be considered in evaluat-
ing radar-performance possibilitiés.

Consider, for a moment, a nonperiodic transmitted waveform
f(t) in relation to the time scales fof f(t) and s(t) in Fig. 2,

Since xy is the minimum delay and X, is the maximum delay, it

‘follows from Fig. 2 that any transmissibn outside the interval

Tx will make no contribution to s(t) inside the ‘observation
interval T (which for convenience is centered at t =0). Thus,
the transmitted waveform could just as well have been a periodic
waveform of period Tx' It is therefore concluded that .only
periodic transmitted waveforms need be considered.

Next, suppose that a periodic waveform of period P, which
is less than the length of the interval D, is used as the trans-
mitted waveform. Since f(t)=f(t+P), it is clear from Eq. 3-5
that any change in¥(x,y) coupled with the negative of that '
change shifted by P along the Ix-axis. and such that 'both -change,s
are confined to D,will not af‘fec-t the radar return. Hence, if

P < D, an ambiguous component of the scatterer density will

‘arise. Waveforms of period less than D are, theret‘oré, of no

interest if unambiguous determination of\}’(x.y) is desired. 1In

the following section we consider waveforms of period P = D.

Attempts to treat waveforms of period P > D have been unsuccess-

ful--it has not been possible to determine whether or not limita-~

tions present for P = D can be alleviated for P>D,
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C. AMBIGUITIES OF RANGE-DOPPLER RADAR FOR P = D

In this section we consider transmitted waveforms of period
P equal to the length of the scatterer-occupied interval D. We
Shall be interested in establishing conditions under which a
sufficiently complete set of ek(x,y)'s can‘be obtained.

The class of waveforms under consideration can be represent-

ed by*

£(t) = E £, od2mkt /D (3-6)

k
where the fk are the Fourier coefficients, and D is the length
of the interval D. Furthermore, for t inside the observation

interval, we have

hi{t;x,y) = E n (x,y) .jant/T (3-7)
k
where
_ 1 . - jenkt /T
h (x,y) = T fh(t.x.y) ) dt (3-8)
A .

Also note that, without destroying any useful information in the
radar return, the observation time T can always be extended so
that

T

p = I = Positive integer (3-9)

From Eqs. 3-1, 3-6, 3-7, 3-8, and 3-9, it follows that

h(t;x,y) = E f, e-JZntx/D sin[:%i:::;‘:ggﬁzl eJant/T (3_10)

n,L

Equation 3-5 and 3-10 indicate that any component of the

scatterer density which is orthogonal to siznkz-;TTzz for all

*Henceforth, it is understood that all summation indices run
from - to +00, unléss otherwise indicated.




b1

k will make no contribution to the radar returns. Hence, the
component that does contribute to the radar return must be

expressible as

VYrlx,y) = Z\VT(x.zm/T) ’—“’-“;:—:i%é—:—’- (3-11)
k

It has already been assumed that ‘Y(x..y) = 0 outside an x
interval of length D. It is now assumed also that the samples
\VT(x,Zﬂk/T) are known a priori to be zero for k < k; and k > k,.
For T >>D this assumption is often nearly equivalent to assuming
¥(x,y) = 0 outside a band of Doppler angular frequencies Yy,
extending from y, = 2ﬂk1/T to y, = 211k2/T. The width of this
band is given by

B=y, -y, =2nlk, -kl)/T , (3-12)

Equation 3-11 can, therefore, be rewritten as follows:

k
2 .
YT(X.Y)"-' ZYT(X,an/T) ﬂn%f::.;g%g) (3-13)
k:k .
) 1

Henceforth, any scatterer density,whose\YT(x.y) component can be
expressed as a finite series in the form of Eq. 3-13 with B
determined by Eq. 3-12 and which is zero for x outside D, will
be referred to as a BD scatterer &ehsity.

Observe that, in the absence of any additional a Efiori
information,\’T(x.y) is the only component of the scatterer
density that can‘possibIQ be deduced from the radar return. we;
therefore, wish to find the maximum value of B, if any, for
which, in the absence of noise,ﬂﬂr(x,y) can be deduced from the
radar rethrn. We also wish to determine what restrictions on

transmitted waveforms are needed to permit deducing aVy T‘(x.y) '

of maximum B.
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It is convenient to define a set of coefficients

£ when k/I is an integer
S { k/1 . (3-14)
0 otherwise
and to rewrite Eq. 3-10 in the form
h{t;x,y) = ho(t;x.y) + hl(t:x.y) (3-15)
where
k2 o
. = -j2n(n+m)x/ID sin(mm-yT/2) _j2mnt/T
Boltix,y) E § €nvm © —n;‘—v#é'u °
n m%k, (3-16)

and hl(t;X.y) has the same form, but the index m runs over values
outside the (k,,k,) interval., It follows from Eq. 3-13 that

o]
. jﬁ&ix.y) hl(t:x1y) dy = 0 (3-17)

- o
Thus, hl(t;x,y) is of no concern to us since, for a BD scatterer
density, it makes no contribution to the radar return.

Equation 3-16 may be written

hyltix,y) = Z by @ (t) 8 *(x,y) (3-18)
n
. where
n+k2 ) :
unz = 2mD E Igil (3-19)
' i=n+k, ‘
k> | |
- AT | j2n(m+n)x/ID g;n‘wm-xT’Z) _
8, (x,y) -"E:Zg;m e x ™ - yT/2 .‘3 20)
m=k, - -
and
T

Note that, if any by = 0 when calculated by Eq. 3-19, then the
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corresponding term is absent from series, Eq. 3-18, so that
there is no need to consider indeterminates in Eq. 5-20. with

the help of Eq. 3-14, it can be shown that

ffe (x,y) 6_*(x,y) dx d -{1 wemen '(322)
R m *+¥7 Fn yiex qy 0 if m# n '

where the region R is bounded by the interval D along the x-axis
and extends from -oo to + o along the y-axis. Thus, the Gn(x.y)
form an orthonormal set over R. Furthermore, the ¢ (t) form a
complefe orthgnormal set over T.

By Eqs. 3-l.and 3-5, the discussion above Eq. 3-11, Eq. 3-17,

and bocauéoYT(x.y) = 0 for x outside D, we have

© .
s(t) = Jr jRKT(X.Y) h,(tix,y) dx dy (3-23)

D -0
for t inside T. Equations 3-23 and 3-18 are analogous to the
basic equationé of the g;neral theory (Eqs. 2-3 and 2-17). The
only change is that the function\YT(x.y). instead of being
identically zero outside an interval B (to yield a finite region
R), is a sin x/x interpolation of samples spaced at intervals
2w/T along y; and the sample values are zero outside B. The
properties of orthonormal expansions obtain,as in the general
theory (see Eqs. 2-22 through 2-23f); theréfore.\YT(x.y) is the
sum of a component Yﬁl(x,y) expressible as a linear combination
of the Sn(x,y) and an ambiguous component Yﬁ}x,y) that makes no
contribution to s(t) and, hence, cannot be défermined_b& the
radar. The necessary and -sufficient condition for unambiguous
determination ofﬂ’T(x,y) is therefore that‘kr(x.y) is known

2 priori to be a linear combination of the 8 (x,y). We,
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thérefore, wish to determine the maximum value of B for which

theV/T(x.y) component of any BD scatterer density can be expand-

ed in terms of Bn(x,y).

It is convenient to express each of the samples Y(x,2mk/T)

in Eq. 3-13 as a Fourier series over the interval D. Hence,

k2 .
Vo) =) D Y () (3-28)
m n=kl
where
umn(x.f) = i2mmx/D Sin(::::igfz) (3-25)

and where the\Knn are the appropriate Fourier coefficients. In

order to be able to expand\KT(x,y) as a linear combination of
the ek(x.y), it is necessary and sufficient that each of the
orthogonal functions'umn(x,y) be representable as a linear super-

position of the B, (x,y): that is, it is necessary and sufficient

that
ugn(xey) = ) w6 (x,y) (3-26)
where ‘
uk(m") = ffumn(x.y) o, *(x,y) ax dy (3-26a)
R

for all m and for k, € < k,.
Substituting Eq. 3-26a into Eq. 3-26 and making use of Egs.

3-25, 3-20, and 3-1&4, we find that it is necessary and suffi-

cient that
g kz . /
Im E * j2n(Im+24-n)x/ID sin(nt - yT/2
: o (-7 7 270 e Im-n+s © ' EVE y'réz
Im-n z=k1 ‘ . (3-27)

Thus, if Eq. 3-26 is to be a correot representation for‘ﬁmn(x.y)

e = = s —




bs

as given by Eq. 3-25, it is necessary and sufficient that

21D . g‘ -{1 " when L=n (3-28)
2 Im SIm+s-n : PR -
BT men 0 for L#n, k,$L%k,

for each m and for kl “n <k . Implied in Eq. 3-28 is that for. ‘

2
no k can W = 0., Observe that, if any u, = 0, then the corres-

ponding term would be missing from Eq. 3-26 and the right-hand
member of Eq. 3-27 would be zero for the corresponding value of
Im-n so that Eq. 3-27 could not be satisfied. )

The above necessary and sufficient oonditions can be

restated as follows:

|‘Im |3 « ZIm-n $o for each m and k, ¢ k € k,  (3-29)
. szn

and
»

€, €£nefy
&1 8xmesen = ©° for each m, k, ¥4 €k,, k; *n¥k,, t#n

(3-30)

If we let k = £ - n, Eq. 3-28 becomes '
=0 for each m, -(kz-kl)‘kg(kz-kl), k# 0
(3-31)

*®
: 8Im EIm+k

Equation 3-29 requires that, for all m, gIm‘f 0. Therefore,
referring to Eq. 3-31, we conclude that, in order to sa'{:isfy
Eqs. 3-29 and 3-31, it is necessary that

k, - k; < I (3-32)

which, with the help of Eqs. 3-9.and 3-12, Eq. 3-32 may be

restated as follows:

BD < 2w : (3-33)
The maximum wvalue of kz -k‘l. which satisfies Eq. 3-32 is

given by

ky -k, =I -1 (3-34)

2 1

B4 s e i AT, s b £t S ik ek PR . o

- P
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which value of k2 - k represents the worst possibility--if an
.adequate set of Gn(x.&) can be achieved for k2--kl = 1I-1, then
it can also be achieved if fewer samplesﬂﬁr(x;Zﬂk/T) are permit-~
tgd by a Efio;i knowledge to differ from zero. Equation 3-34
implies that, for any integer n, a unique integer‘p can be found
such that |

.n+k1£1p£n+k2 (3-35)

Applying Eq. 3-35 to Eq. 3-19 and making use of Eq. 3~14, we

find that

2 _ ‘ 2 < £ ,
o 2nD prl for Ip-kz n Ip-kl (3-36)

In other words for every transmitted harmonic fp, there are

k2 - kl + 1 = 1 equal characteristic values un; and since no

fp = 0, then, for every n, b _ # 0. From Eqs. 3-36 and 3-14, it
follows that Eq.'3-29 is satisfied. Also, as a result of Eq.
3-34, Eq. 3-30 is satisfied. Thus, we are assured that, if

(a) for all p, fp # 0; and (b) Eq. 3-33 ﬁolds, the set of Gn(x,y)‘
" is sufficient to expand th;KVT(x,y) component of a BD scatterer
density, and unambiguous determination of\YT(x,y) is possible.

The set of en(x,y) is obtained by using Eq. 3-35, together with

Eq. 3-14 in Eq. 3-20. Hence,

%
f
8 (x,y)= ,/ L P e.i‘Z‘ITpx/D Sin['n In_pn) - vT/2

P

- < < -
for Ip k2 n Ip kl

so that, for every transmitted harmonic f_, there are
kz - kl + 1 = I characteristic functions Gn(x.y).
For a transmitted wave of period P = D, we have, therefore,

shown that, in order to obtain unambiguous determination of

20 v G bt gt

S
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¢b(x.y) for a BD scatterer density, it is necessary and suffi-

eient that

(a) the transmitted wave contains all its harmonics
(no £, = 0)

(b) kz - kl < I, or BD ¢ 2nm -- that is, the scatterer
density must be such that the samples WT(x.zﬂk/T)
are rero for k < kl and k > k2

1t is interesting to note that condition b corresponds to
the well-known limitation on maximum unambiguous delay and maxie
mum unambiguous Doppler frequency encountered in periodic pulse

radar systems.

D. NOISE AND SMOOTHING
It is assumed in this section that Eq. 3-33 is satisfied,
that the period of the transmitted waveform is equal to D, and.
that all harmonics are present. Thus, we are assured that there
is no ambiguous component of WT(X:Y)° In analogy to Sect. D of
Chapter II, a performance index which is an average-signal-to-
average-noise ratio will be defined. Expressions for this ratio
will be obtained in terms of useful system parameters,
Suppose that a smoothing operator of the foilowing form is
chosen
s(x,y) = a(x) b(y) (3-38)
. where both a(x) and bly) could be some pulse-like forms centered
at x = 0 and y = 0, respectively. The width of a(x) is much
smaller than D, and the width of b(y) is much smaller than B,

We oan, therefore, write
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a(x) = Z.ak ejznkx/n (‘3-39)

k
In order to assure tl"xa;‘:t S(x-x',y-y') is expressible in térms of
the G‘n(x.y)‘ (see Chap. II, Sect. C) , it is necessary to assume
that the Fourier transform of b(y) is zero outside an interval

T. Henoce,

oo
2= [ viy-u) “—L‘ﬂ"%ﬁ’- du = b(y) (3-40)
- 0 ‘

To apply the theory of Chap. II, Sect. C, we note that, in

analogy to Eq. 2-30a, we have

®
Pn(x.y) = [‘[S(x--x'.y‘-y') Bn(x'.y") dx'dy' (3-41)
D -

Thus, using Eqs. 3-38, 3-39, and 3-40 in Eq. 3-41 gives:
*

f
« /21D _p j2npx /D _ i
Palxe) TV TR ] % by - antxgon)] (3-42)

- £ L -
for Ip k2 n -Ip kl

Furthermore, by analogy to Eq. 2-42 and with the help of Eqs.

3-40, 3-42, and 3-36, we obtain

—_— N
|n(x.y)|2 = _'Fo

a
=
P

2 k2 2
E |o(y - 2m/T)| (3-43)
m=k1 ' ’

The assumption resulting in Eq. 3-40 also yields

bly-u) = )  bly-2m/7) salm=uiiz) (3-4t)

®
j Ib(y-u)l2 du = g’l‘nz Ib(y-zm/T)lz

so that
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Comparing this expression with Eq. 3-43, we obtain

|ntxy)]® < wg (3-45)
where
No a 2 © 2
oz ) & [hw| e (3-46)
eyl B 2 B .

Since b(y) is a narrow spike, much narrower than B, we see that,
for y inside B, and not too near the edge of B, we have approxi-
mately, _
for y inside B (3-47)

[rxon)|® = n

Furthermore, for y. appreciably outside B, In(x.y)l2 is nearly
Lero.

The quantity NR,given‘by Eq. 3-46, cannot be defined the
same way as in the general theory (see Eq. 2-43) because the
region R in this chapter is infinite. It is interesting, though,
that |

@ ———————
1-3]-'5' f f ln(x.y)l2 dx dy
D -

leads exactly to NR‘above; and to that extent, BD is the "effective!
area of R and NR is the "effective" average of the mean-square noise.

Because the region R considered here is infinite, the ‘average
signal intensity‘also cannot be defined as in Chap. ;I (see Eq. 2-52),

Nonetheless, the average-signal-to-average-noise ratio calculated

from Eqs. 2-42, 2-52, and 2-53,

o 2
j:[hg(x.y)l dx dy
- 00

7=
ffl‘n(x.y)lz dx dy
R

(3-48)
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exists inasmuch as the factor 1/R is cancelled in the ratio.
By a procedure similar to the one used in obtaining Eq. 2-57,

we find that, for a rough scatterer density

jiklﬂg(x.y)lz dxdy = Kss(o,o) jiixwﬂﬂu'v) dudv
P g |

which, with the help of Egqs. 2-54a and 2-55a, becomes

fflvs(x.y)|2 dxdy = ffls(x y)l dxdy If Vix,y) dxdy
-

(3-49)
Afsimilar relation can be obtained for the smooth case; but we
:shall confine our attention to the rough case, which appears to
be of greater physical significance. It follows from Eqs. 3-43,

3-9, 3-38, and 3-49 that Eq. 3-48 can be written ;;

fla(x)
Vix,y) dxdy - (3-50)
Y

Z I P/fp R

It is interesting to define the number of useful modes, a

quantity analogous to J given by Eq..2-51 in the general theor}.
The normalized quantities o and p, can be defined as in Eqs.
2-48 and 2-49, except that ;;E in Eq. 2-48 cannot be defined for
an infinite region. However, only the ratio of
pkz‘ to anz
h

is needed; hence, we define
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fflpk(x.y)l2 dxdy
oy * R .
5= [leorl o
n R

Making use of Eqs. 2-49, 2:51, 3-36, 3-39, 3-42 and the above

definition, we obtain

Py
Je=1 E = (3-51)
a 2 P P
: k P
k
where Po is the average transmitted power given by
_ 2
Po = E fn (3-52)

n
Note that, as a result of Eqs. 3-1, 3-6, 3-9, and 3-52, ve

can write

1 f 2

a5 J |h(t:x.y)| dt dx dy = P, T

BDT

regardless of the length of the interval B. Comparing the above
result with Eq. 2-45, we have

E, =P

With the help of Eqs. 3-51, 3-53, and 3-39, we can rewrite Eq. 3-50

as follows:
2

] |
1= 5% |[fvxn) ax o (3-54)
R

which, if we take into account Eq. 2-63, agrees with Eq. 2-61.
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EB. SYNTHESIS OF THE TRANSMITTED WAVEFORM

In this section we obtain transmitted-waveform requirements
which, for a given transmitted average power and the smoothing
function specified by Eq. 3-38, yield the maximum output signal-
to-noise ratio,.

As long as the fp's are different from zefo, the §mqothed
scatterer density Y_(x,y) is independent of the f,'s so that we
can choose a set of fp's to minimize In(x.y)lz, as given by
Eq. 3-43 without affecting the signal intensity. Thus, the set
of fp's which minimizes T;T;T;TTZ als§ maximizes both the average-
signal-to-average-noise ratio as well as the local signal-to-noise
ratio st(x,y)lZ/ln(x,y)IZ.

It is clear from Eq. 3-43 that the larger the prl's the
smaller |n(x.y)|z. However, since the average transmitted power
Po must remain finite, we need to impose Eq. 5-52 as a constraint.
Applying the method of Lagrange's multipliers, we minimize Eq. 3-43

under the constraint imposed by Eq. 3-52. The result is

Iea|” - i——P-‘ia—T 2] (3-55)
— k

Thus, once the smoothing operator has been selected, the optimum
distribution of transmitted power throughout the spectrum is
determined by Eq. 3-55. The phase angles of the fn‘s are arbi-
trary so that it might be possible, in principle, to minimize
the peak power requirements by adjusting the phases.

If a(x) is a realizable autocorrelation function, and if

the optimum transmitted waveform is used, then Eq. 3-51 yields

PR, v v
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2
g1l | (3-56)
| fla(x)l,z dx
-

where we have also made use of Eqs. 3-39 and 3-55. The factor

fmla(x)l2 dx/az(O) is a measure of the yidth of a(x) or a

m;;:ure of the reciprocal bandwidth of the spectrum of a(x).

However, by Eq. 3-55, a(x) is the autocorrelation function of

the transmitted wave so that 52(0)/ faia(x)lz dx is a (somewhat
-

unusual) measure of the bandwidth of the transmitted wave; and,

in this special case, J reduces to a radar time-bandwidth product,

The average-signal-to-average-noise ratio for the optimum
transmitted waveform is given by Eq. 3-54 with J evaluated as

the time-bandwidth product of Eq. 3-56.

F. THE PROCESSING OF THE RADAR RETURN

The receiver weighting function corresponding to the choice
of smoothing function given by Eq. 3-38 is obtained in the same
way as in the general theory (Chap. II, Sect. F). Equation 2-61
results, except that the summation index now runs from -~ to

+00. Substituting Eqs. 3-21, 3-36, and 3-41 into Eq. 2-64, we

obtain
I -k,
o a '
W (x,yit) =% E 2 0 32mPx/D E ' b[y-zﬂ(lp_n)/,r].-jzﬂnt/T
P e
P n Ip k, (3-57)

Substituting m for Ip-=p, making use of 2q. 3-9. and rearranging

terms gives




sk
m=k1 | i;
a }
p p mgk .
. 2 (3-58)
It is convenient to define the Fourier transform of b(y)
[0 o]
B(t) = f blu) ¢ 9% au (3-59) j
-m 4
from which it follows that -
(o] : :
B(t) o= [ b(y-v) oI av ~ (3-60)
Making use of Eq. 3-44 in Eq. 3-60, we obtain
B(t) o I% = 20 E b(y-2m/T) ¢32™®t/T (3-61)

m

for t inside the interval T. If we recall that the width of the
spike-like form b(y) is much narrower than B, we see that, for y
inside B, and not too near the edge of B, Eq. 3-61 may be approxi-
mately rewritten as follows

k2

B(t) o IV - 20 Zb(y—Z‘nm/T) oi2mmt /T (3-62)

m=k1

'Using Eq. 3-62 in Eq. 3-58 gives

W (x,yit) = 5%; = o~ 32mP(t-x)/D g(yy =iyt (3-63)

) P

Suppose that the spike-like form a(x) is a realizable auto-
correlation function so that all the a,  are positive. Then, if
the optimum transmitted waveform, specified by Eq. 3-55, is used

in Bq. 3-63

W (x.yit) ’,'92'%3(” rr(e-x) 3% . (3-64)
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where we have also made use of Eq. 3-39 and Eq. 3-6. If B(t)
v is constant throughout T, so that b(y) specifies only the
‘unavoidable smoothing associated with a finite observation

interval, the weighting function in Eq. 3-60 is the matched

filter of conventional radar theory.

G. APPLICATION TO THE MAPPING OF THE LUNAR SURFACE

An interesting application of radar to dense-scatterer
distributions is encountered in the problem of radar mapping of
the lunar surface in range and range-rate (or delay and Dopp}er-
frequency) coordinates. Such a mapping has been carried out by
the Millstone Radar.ll.

Of importance to this mapping is the libration of the moon--
an apparent angular vibration of the moon as viewed by an observ-
er on the earth. The major component of libration arises in the
following manner: The same hemisphere of the moon is continually

‘pointing toward the center of the earth. Thus, an observer on
the surface of the earth sees slightly different portions of the
moon as the earthﬂ;oégies to~place £he moon in different posi-

"tions above the observer's horizon. As a result of this.effect,
the moon appears to rotate on its own axis through a small angle
when viewed from a point on the Qarth's surfgce. Different
‘points on the surface of the moon will, therefore, havé differ-
ent range rates. Thus, a time-delay and a Doppler-frequency

coordinate, together with a scatterer density yi(x,y), may be

assigned to oaqh point on the surface of the moon.

A e kS e 1 AT A B+ R
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In the Millstone experiment an estimate of[¢(x.y)|2, where
x is time delay and y is Déppler frequency, was obtained. The
estimate may be assumed to differ from a physical map of the lunar

surface for reasons pointed out in Chap. I1I, Sect. A. Furthermorae,

aside from equipment limitations, noise .and smoothing will'give

rise to errors, as discussed in Chap. II, Sects. C and D; and
Chap. III, Sect. D.

In the following we apply the theory developed in the pre-
ceeding sections to obtain the optimum waveform and receiver
weighting function appropriate for mapping the lunar surface with
a radar of the same carrier frequency (44O Mc) and limit on
observation time (T‘max = 9 sec), as were reported for the
Millstone experiment. The observation-time limit is set by r-f
oscillator stability. From the Millstone data11 it is clear

that the scatterers on the moon's surface are confined to a

‘range interval equal to the moon radius, which‘corrggponds to a

delay time or x interval of 23 msec. Furthermore, the scatterers
are confined to a range-rate interval, at maximum libration rate,
that corresponds, at 440 Mc carrier frequency, to a Doppler fre-
quency or y interval of about 76 rad per sec. Consequently, the
samples W(x,Zﬂk/T) may be expected to be zero, or very nearly
zero, for x outside D ='23 msec; and for 2wk/T,outside B = 76 rad
per sec. Thus, a BD scatterer density is at least approximate&;
and BD = 1.7 € 2n. Observe that, as long as BD < 2m, the theory
of Chap. II, Sects. D, E, and F, is applicable; and the period P
may have any value D < P < 2n/B or 23 msec < P < 83 msec. A

period of 30 msec was used in the Millstone experiment.
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Suppose that a(x), the function that specifies the smoothing
in time delay, is chosen to be a triangular pulse, as shown in
Fig. 3 where 6 is the width at the half-amplitude points. The

function b(y) that specifies the smoothing along the Doppler-

" frequency axis must be chosen so that its Fourier transform is

. confined to the interval T. A suitable sbiko-liko form for bly)

is
sin yT/2

ey (3-65)

bly) =

And for this choice of b(y), the attainable y-axis resolution is
limited to that obtaining for T = Tmax'

Having chosen the smoothing.functions. we shall apply
directly the theory in Sects. E and F to obtain, for any specific
P, §, and T, the optimum transmitted waveform and the correspond=~
ing receiver weighting function. We shall also'investigate the
effect of changes in P, 6, and T on the radar performance.

From Fig. 3 and Eq. 3-55.. we see that the |fn|32 of the
optimum transmitted waveform must follow a (sin x/x)2 envelope
such that the time autocorrelation of f(t) is a periodic string
of triangular pulses of the form shown in Fig. 3. Since the
phases of the transmitted harmonics fn are arbitrary, the above
condition can be satisfied by a wide class of transmitted wave-

forms, among which is the periodic train of rectangular pulses

of width § and period P. The relative simplicity of the trans-

mitter and the receiver are important advantages of the periodic

pulse waveform. However, other waveforms, whose fn have differ-. . . . ...

ent phase angles, may result in lower peak power requirements

if the conditions of the theory can be met in the construction

—— e L
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of the transmitter and‘receiver. The waveform actually used in
the Millstone experiment was‘an approximately rectangular pulse
train with a pulse width 8§ = 500 psec and a period P = 30 msec.
It follows from Eqs. 3-59, 3-65, and 3-64 that the appro-
priate receiver is a matched filter with an integration time
equal to T. For T = Tﬁax‘= 9 sec, such a receiver corresponds
very closely to the digital data-processing scheme used in the

Millstone experiment.

Thus, if the same smoothing is to be obtained as in the

Millstone experiment, the optimum transmitted waveform (aside

from the possibility of altering the phases of the transmitted
harmohics as discussed above) and the corresponding receiver
weighting function obtained on the basis of the dense-scatterer
theory are in agreement with the waveform used in the Millstone
experiment . |

Assuming that Y(x,y) is a rough scatterer density, we see
from Eqs. 3-54, 3-53, and 3-56 that, for a given average power,
the ayerage-signal-to-average-noise ratio is independent_of the
duration of the observation interval T and the smoothing in
Doppler frequency b(y). Thus, Doppler-frequency resolution can
be increased without cost in signal-to-noise ratio by increasiﬁg
T from any small value to the allowable maximum. The ihtervai
Tmax = 9 sec used in the Millstone experiment may thus be éoh-
sidered optimum in view of the equipment iimitations, In con-
trast, as the width of the smoothing function a(x) decreases,
the average-signal-to-average-nolse ratio decreases. The choice

of § = 500 usec in the MiIlstone‘experiment is thus a compromise

between the greater resolution a shorter pulse would provide and
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~the cost in signal-to-noise ratio (for fixed average tran-mittod

Lot

power) . ‘

As long as D < P < 2n/B, we note that: (1) the samples
W(x,Zﬂk/T) are zero outside an interval smaller than 2n/P along
the y-axis,and Y(x,y) is zero outside an interval smaller than
P along the x-axis; and that (2) the set of en(x.y) is complete
(assuming fn # 0 for all n) for x inside an interval of length P
and for samples at y = an/T inside an interval of length 2n/P.
Tﬁerefore. if the lunar surface is characterizable by a rough
scatterer density, Eq. 3-54 applies. As a result, the average-
signal-to-average-noise ratio is independent of the period P for
D < P < 2n/B. Furthermore, the resolution is also independent

of P for D < P < 2n/B,
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CHAPTER 1V

CONCLUSIONS

A. GENERAL THEORY

There are two basic limitations on radar performance in
donso-scafterer applications:

1, The incompleteness of the set of characteristic func-
tions Gn(x,y). This incompleteness results in an ambiguous
component of the scatterer density, 4Q}x.y). which makes no
contribution to the radar return and hence, even in the absence
of noise, cannot be deduced from the received waveform. Only
the unambiguous component, W"(x,y). can be uniquely determined
from the noise-free radar return.

2. In the presence of additive, stationary, white, Gaussian
noise, only an estimate of a smoothed form of Y(x,y) can be
obtainéd and, then, only if the desired smoothing function is
expandable in terms of the Bn(x.y). As the degree of smoothing
is increased, the signal-to-noise ratio on the radar display
Ancreases; but the sharp details of Y(x,y) (or |¢(x,y)|) are
smoothed out. Any‘radar design must be a compromise between a
loss of detail in excess of that resulting from the incomplete-

ness of the On(x.y) and the signal-to-noise ratio on the display.
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B, DELAY-DOPPLER THEORY
Time delay and Doppler frequency constitute a pair of
coordinates for which a scatterer-density function can be defined
so that its determination or estimation may be taken as the
objective of the radar system. ,
If all the time delays are known g.ggiggi to be confined to
;a finite interval D, and if the observation time is confined to

a finite interval, then:

1. Only periodic waveforms need be considered as possible

transmitted waveforms.

2, A transmitted waveform of period P less than D will
give rise to an ambiguous component of the scatterer
density. '

3. Only the Yqlx,y) component of the scatterer density,
that is, the component that can be expressed as a
sin x/x interpolation of samples spaced at intervals
2n/T albng y (see Eq. 3~11), contributes to the radar

return.

If a periodic transmitted waveform of period P equal to D
is used, and if it is known a priori that the samples of Yp(x,y)
at intervals 2m/T along y are zero for y outside an interval B,
then Yo(x,y) can be deduced unambiguously from the noise-free
radar return if, and only 1if,-

1. BD < 27

2. All harmonics of the transmitted waveform are different

from zero.
If the foregoing conditions are satisfied and if a(x),
specifying the smoothing along the x-axis, is a realizable auto-

correlation function, then, for a given transmitted average powver
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| the output signhl-to-noiso ratio is a maximum when the time
autocorrelation function of the tfansnﬂtted waveform is a

» périodic string of pulses of the form of a(x). The receiver
weighting funoction appropriate for such a waveform resembles

closely the matched filter.

hY e e v -
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